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Abstract—The Boundary Element Method is combined with the method of compatible defor-
mations to analyse the stress distributions in cracked finite sheets symmetrically reinforced by
bonded patches and stiffeners. The two-dimensional theoretical model involves an exact rep-
resentation of the crack tip stress singularities and the stress intensity factors may be calculated
directly. Examples of configurations arc studied in order to demonstrate the practical usc of the
method, and it is shown that converged results from the model are representative of adhesively
bonded structures.

1. INTRODUCTION

Cracks in acrospuce structures tend to occur in regions of stress concentration, €.g. near
cdges, cutouts or fastencrs. Therefore, the design and asscssment of patch repairs to
structural configurations must include the combined effects of the patch and nearby bound-
aries. The presence of ncarby boundaries usually increases the rate of crack growth and
hence reduces the fatigue life, Ignoring the cffects of boundaries could lead to unsafe
predictions of service lifetimes. Aircraft design often incorporates stiffeners to reinforce the
strength of the thin shect metal which comprises the fuselage and wings. It is therefore also
desirable to include the influence of stiffeners when theoretically analysing cracked panels
if the results are to be applied to practical structural configurations.

In the present work, the Boundary Element Method is coupled with the method of
compatible deformations (Dowrick ef al., 1980 ; Dowrick, 1987 ; Young et al., 1984, 1988,
1989), in order to analyse patched and stiffened finite sheets. This technique provides an
accurate and versatile means of analysing many configurations of a reinforced cracked
sheet, although the present two-dimensional theory is restricted to cases where the cracked
sheet and the patches are isotropic, lincarly elastic and the entire structure does not bend
out of plane. The reinforced sheet configuration is analysed for static loading and the stress
solution obtained from the model includes the values of the stress intensity factors at the
crack tips.

2. DEVELOPMENT OF NUMERICAL MODEL

When a repair patch or a number of stiffeners are bonded to a thin flat sheet, the
deformation of the sheet under loading is resisted by the reinforcing members. The influence
of reinforcements on a sheet can be considered as a distribution of forces over the regions
of attachment, which for balanced configurations (i.e. those in which the structure remains
plane after deformation) may be considered as body forces. In this case, the behaviour of
the sheet may be described using the theory of generalized plane stress and the theoretical
modelling of the reinforced structure is reduced to a two-dimensional problem in terms of
the unknown attachment force distributions. The solution for the attachment forces is
obtained from the condition that the deformations of the sheet, adhesive layers, patches

0 1992 Crown copyright.

2201



2202 A. YOUNG et al.

and stiffeners under the action of the external loading and the attachment reaction forces
are mutually compatible.

Define a set of rectangular Cartesian coordinates x,. x,. x; and consider a flat isotropic
sheet of thickness A. tensile modulus E and Poisson’s ratio v with a boundary (or boundaries)
described by the contour I in the x = (x,, x,) plane. The contour I' is directed such that
the interior of the sheet is to its left-hand side. Tractions (i.e. forces per unit thickness, per
unit arc length) ¢,(x). where j = 1,2 corresponds to the directions of x,. x;. exist on the
boundary I" and the sheet is loaded internally with distributions of body force per unit area
F}(x) over a region A and force per unit arc length f*(x) over a line (or lines) L. These
loading conditions are accompanied by a displacement field u,(x) at points x on or within
the boundary . The variables ¢,, w,. F/' and f} (j = 1.2) in this configuration satisfy the
following integral equation based on Somigliana’s identity (Leipholz. 1974),

¢;{Xo)u(Xo) =f (U, (x. X, (x) = T;(X. Xo)t,(x) } ds (x)
r

1
+ jj Ul(x. xg)F(x) dx  dovs + ;’J U(x.xo) fH(x)ds (x). (1)
A L

where ds (x) = {(dx,) + (dx;)"} " 7 is the differential of arc length and repeated sutfixes are
summed. The term T,(x, x,) represents the traction distribution (i = 1, 2) applied over
points x on the boundary I', which in conjunction with a unit concentrated force acting in
the j-direction at the point x, = (g, .X,:) on or within I, will give rise to the displaccment
ficld U,.(x.x,) identical to that for the same force in an infinite unbounded sheet of the
same material. The cocflicients ¢,(x,) of the free term on the left hand side of eqn (1)
represent the contribution duc to the concentrated forcee itself, Expressions for the fun-
damental displacement solution U,,(x,.x,) and the corresponding traction distribution
T,(x.x,) may be obtained from infinite sheet solutions [see for example Muskhelishvili
(1963)]. The fundamental solution obtained for a concentrated foree in an intact infinite
sheet is known as the Kelvin solution (Banerjee and Butterfield, 1981). Alternatively, a
fundamental solution derived by Erdogan (1962) for a concentrated force in an infinite
cracked sheet may be used. If the finite sheet to be modelled has a crack at the same location
as in the infinite sheet, then the conditions T,,(x, x4) = 0 = 1,(x) on the crack locus cause
the contribution to the boundary integral in eqn (1) from the crack itself to be identically
zero. In this case, the crack need not be included as part of the boundary I and the solution
to eqn (1) will implicitly include the presence of the crack, along with the associated singular
stress field at each crack tip. The integral eqn (1) will be used to represent a cracked sheet,
using the Erdogan fundamental solution, and a patch, using the Kelvin solution.

Consider the following reinforced sheet configuration. An isotropic sheet of thickness
i, tensile modulus E* and Poisson’s ratio v' contains a straight crack located at
f—a < x, €a, xy=0} and has distributions of traction ¢;(x) and displacement u;(x) on
its boundary ™. A number of isotropic patches are bonded to the sheet. The mth patch
(m=1,2,....M) is of thickness /7, tensile modulus £%, and Poisson’s ratio v}, and has
tractions (7"(x) and displacements 4™ (x) on its boundary I'},. The sheet and the mth patch
are bonded together over a region A, by means of an adhesive layer of thickness /;, and
shear modulus g, which is assumed to act lincarly in shear only. Any other stresses which
may exist in the adhesive are assumed to have a negligible effect on the load transfer.
Denoting the component o, (j = 1,2) of stress in the adhesive by 7;™, the reaction between
the sheet and the mth patch at points x in A,, is represented by distributions of body force
per unit area given by

Fr(x) = —FP™(x) = ©"(x), (2)

where the superscripts prn denote terms identified with the mth patch.
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The condition that the deformations of the sheet and patch over the region 4 are
compatible with the shear deflection of the adhesive layer may be expressed as

a

ki ,
[ (X)) =™ (x") = OF (X’ ~ x")] = [1}(x") —15(x")] = e [ () =" (x")], 3)

m

for j = 1,2 and where x" and x” are two distinct points in the attachment region 4,,, and
O7(x) = {—3"x,, 3" x,) accounts for any difference in the rigid body rotations {3™) of the
patch and the sheet.

In addition. a number of stiffeners are bonded to the sheet over the loci L,
(n=1.2.....N%). Each stiffener exerts a line distribution of force per unit arc length
) (f=L2:n=12.... N*) on the corresponding locus L, in the sheet, and itself
experiences an equal and opposite reaction force —f7(x) along its length. The material and
structural parameters of the nth stiffener are given by : length 7 ; width w} over which the
bond is assumed to act; cross-sectional area BY ; second moment of cross-sectional area
I3 tensile modulus E} : shear modulus G ; transverse flexural rigidity D} = E}[;. The
condition that the displacements of the sheet «}(x) and the nth stiffener «(x) are compatible
with the shear deflection of the adhesive layer, of thickness 42 and shear modulus 1. is
similar to eqn (3) and is given in terms of /7, the interaction force per unit length, by

vt
(1 () =] ()] = () = (x)] = i: 76 = 7] C))

”

where X" and x” are distinct points on the nth stiffener locus L,,. The quantity f7(x)/w} in
cqn (4) corresponds to the shear stress g, in the adhesive layer and is analogous to 7)™ (x)
in eqns (2) and (3) for the patch. As for the patch attachment carlier, other adhesive stress
components arc assumed to have negligible effects.

Uander the action of the boundary tractions £}(x), x on I, the patch reactions F}"(x),
xin A, (m=1.2,... M), and the stiffener reactions f7(x),xon L, (n = 1,2,...,N"), the
integral cquation (1) for the sheet becomes

cjt(x(l)“:(xll) = J.

- {Ul‘l(x' x())’:(x) - nl(x' xl))"l“(x)} dJ'(x)
| M ¥
tn ¥ IL U,‘,(x.xu)t;“’"(X)d'\f.dxﬂE 3 ) Uji(x,x0) f1(x)ds (x), (5)
o | Ay e} n

where eqn (2) has been used and the superscript s on the fundamental solution terms
denotes those associated with the sheet material and crack geometry. Similarly, eqn (1) for
the mth patch reduces to

Gl (Ro)l™ (x0) = J (U7 (x. %)™ (x) = TR (x. Xo)u™(x) } ds ()

LE4

1
—/EJJ; Ufm(x. xo) " (x) dx; dxy. (6)

When the source point x, is taken to lie in the attachment regions 4, i = 1,2...., M)
or L, (n=12,....N"), eqns (5) and (6) with the free-term coefficient c,(x,) =J;
(Kronecker delta) provide the interior displacements used in the compatibility eqn (3) or
(4). Then for points x” and x” in A4,,, but not on I'* or I'%, eqns (3), (5) and (6) give
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J; [AU;',"'tf”"(x)—-A]T,"'uf""(x)]ds(x)-J [AUS6(x) — AT u(x)] ds (x)
A ™

R |

= AU fI(x)ds (x)+ — AU t™(x) dx, dx,
h' n=1 JL, h;’n A,
1 ¥ " h;, .

+ti Y AUf.r (x)dx, dx, + ;;[ X)) =7 (x)]+OT(X =X (T)

k=1 m
where
AU} = Uj(x,x) = Ui(x,x") and AT}, = Tj(x.x") = T7(x.x"). (8)

with « = pm for the mth patch and @ = s for the sheet. If any part of the boundaries [ or
I}, coincides with the edge of the attachment region A,,. the displacement boundary values
are used directly for the appropriate terms in eqn (3).

The requirement that the forces acting on each patch are in equilibrium provides 3Af
further equations of the form

l
J 6 ds (0~ ” 7"(x)dx dy; =0,
t3 /l,,, A

i
i JJ. L ¥ (x) —xatih dyy dy, = 0. (9)

J Lo 57 (x) — x5 (x) } ds (x) —
s, m

Similarly, combining eqns (4) and (5) gives the compatibility equation for points x’
and x" on the nth stiffener locus

[uj’(x’)—u;'(x")]—J. [AUE(x) = AT i} (x)] ds (x) = I‘ Z JJ AUt (x)dx dx,
e

"=
N

+5 2 Jl AULSY (x)ds (x) + ;,[/ ()= f7(x")]. (10)

n=| Vn n

The displacements ] of the nth stiffener in the above equation are most easily expressed
in terms of an arc length parameter y measured in the longitudinal dircction from one end.
For notational clarity, the superscripts st, n, m are omitted here since the stiffeners act
independently. The relative displacements of a thin stiffener due to a body force distribution
~f.(») per unit length (0 < y £ /) are given by

1 (3) = u (0) = [v1(3) —vi(0)] cos @ — [v2(y) —v2(0)] sin
us () = u3(0) = [04(¥) = v, ()] sin @+ [02(y) —22(0)] cos ¢ (1
where ¢ is the angle of orientation of the stiffener with respect to the 2-direction, and the

displacements ¢, and v, of the stiffener in its own transverse and longitudinal directions
respectively of the form

I
v(y)—rv(0) = B {)'Tl (0)+J; (y=m/fi(m) d'l}
1 {1 ] "
-5 {5 yIM0)+ 6}"T|(0)+L 5()‘—'1)’f|(n) dn}—yﬁ:l(O)

and
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l ¥
r2(1) =120 = 5% {_VT:(O) + J; (y=m/f:(m) d’l}‘ (12)

with T,(»), T:(¥) and M(y) representing the internal forces and moment acting over the
stiffener cross-section. In terms of the stresses o, acting within the stiffener at points
(x.v.2) = (x, cos @ —x, sin ¢, x, sin ¢ + x> COs @, X;), they are given by

T.(») = ox. v.20)dxd: T,(0) = IJ. o1y(x. v o)dxd:
J JB 8

and

r e

M(y) = (x—%)6,-(x, y.2)dx d: (13
8

o« o

such that the state of stress in the stiffener approximates to the following form
o220 o) = TL,0B+(x—XYM(W/I, oy =T (0B, (14

with ¥ denoting the x-coordinate of the neutral axis and f3,,(0) denoting the partial derivative
¢v,/dx evaluated at the end y = 0 [analogous to the rotation term @ in eqn (3)]. Because
the reinforcement is balanced, the out-of-planc stresses a4, 013, 74, in the stiffener will
have a negligible effect on ¢ ((¥) and v,(y).

In addition, the conditions that the stiffener is in equilibrium under the action of the
body forces —/,(3) and the end loads T',{0), T\(7). T2(0), T»(/) and M(0), M(/) arc given
by

I'4

4
J J:(0dy = T:(7) = Tx(0), J- Sidy =T(2)=T,(0)

0

and

f (=S dy =M()-MO0)—-2Ti(0). (15)

0

The end loads in eqns (15) correspond to boundary conditions for the stiffener. Setting ail
six values to zero will represent a stiffener with free ends. Alternatively, the values may be
chosen to specify a given state of stress or strain at the ends. The latter case will arise when
a section of a much larger stiffened structure is to be modelled and it is required that the
stiffener should deform together with the underlying section of sheet at the ends.

3. DISCRETIZATION OF EQUATIONS

For a given loading and constraint on the reinforced shect configuration, it is possible
to determine the complete solution for the tractions and displacements on the boundaries
of the sheet and patch and the reaction force distributions duc to the patch and the stiffeners.
In order to use eqns (5)-(15), the problem is discretized so that the integral equations
derived in Section 2 may be reduced to a sct of simultaneous linear equations.

The boundary ' of the sheet or a patch is subdivided into a number of quadratic
isoparametric elements, each containing three nodes : one at each end and one at the centre
of the element (Bannerjee and Butterfield, 1981), those at the ends being in common with
ncighbouring elemcents. Then, the boundary integrals in eqns (5}, (6). (7), (9) and (10)
reduce to linear combinations of the nodal values of traction and displacement. The
coefficients of the nodal boundary values are in the form of integrals, which are evaluated

SAS 29:17-6
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numerically by Gauss quadrature [see Abramowitz and Stegun (1972) and Anderson
(1963)].

The integrals involving the stiffener forces /7 (x) ineqns (5). (7) and (10) may be treated
similarly to those involving the boundary tractions ¢,(x). The loci of the stiffener reinforce-
ments are subdivided into quadratic isoparametric elements and the integrals occurring in
the stiffener deformation equations (11), (12) and (15) similarly reduce to linear sums of
the nodal values.

An attachment region A,,, over which the sheet and a patch are bonded together. is
subdivided into a number of elemental areas, referred to as cells, and the distribution of
adhesive stress t7(x) is described in terms of nodal values associated with the cells. Over
each cell, the spatial coordinates x, and the adhesive shear stresses t™ are all assumed to
vary quadratically with respect to parametric coordinates (7;.7:). with —1 <7, < +1,
—I<y. < +1

Consequently, each cell contains nine nodal points x¢ and adhesive stress values 17
(¢g=1.2..... 9. j=1,2), although individual nodal values of adhesive stress may be
common to two or more cells. Then the integrals in eqns (5)-(10) reduce to sums of terms
associated with each cell of the form

9
JJ U, (x.x)ti () dx  dxy = Y tf1i(xo). {(t6)
Cell g=1
and
(3 [
I7(xy) =J J U, x(y . y2) xo) MOy 7 2) I3 72) dy dys, (17
1 |

where MY(y,.y,) are quadratic Lagrange shape functions and J(y,,7,) is the Jacobian of
the transformation from coordinates (g, x3) to (y,.72). The integrals [7(x,) are evaluated
using Gaussian quadrature.

However, when the source point x, lies within the cell, the term U, (x, x,) contains
a logarithmic singularity (see Appendix) which will cause numerical errors if Gaussian
quadrature is used directly. In this case, the integrand in eqn (17) may be made continuous
at X = x, by subtracting a suitable logarithmic singular term, which itself may be treated
separately. If x,, coincides with the nodal point x” on the cell and with the point (4. 76:)
in the local transformed space, then the integrands in eqn (17) are all continuous
(¢ =1,2....,9) except when ¢ = rin which case (17) may be rewritten

vl [t
1,(x7) =J J‘ UGy ) XDMG Ly ) I 7))
i 1
—/.-,. In[(7, "701)l +(72 -?uz)l]-/(‘/ol-'/'nz)} dy, dy,

[N r 1
+;-,.J(?'()|'7'()2)J J In [('/t“71)1):+(}':—7():):]d7'1d'/':- (18)
b J

For a suitable choice of the quantitics 4, (i.j = 1,2), the integrand enclosed by { | is
continuous and its integral is evaluated by Gaussian quadrature. Then the second integral
in eqn (18) may be evaluated analytically (sce Appendix). By considering the form of the
function U,,(x. x,) given in the Appendix, 4, are given by

) HEG=-v(+v) |
’-~=“‘z‘['*m ]" (>

except when x, = x” is on the crack in which case
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tf 2
L= - E[E]aﬂ. (20)

Having discretized the distributions of traction and displacement on the boundaries
and the internal attachment force distributions, the integral equations reduce to a set of
simultaneous linear equations in the nodal values of traction, displacement and body force.
If the sheet boundary I™* incorporates N* nodes, the M patch boundaries I} to I, incor-
porate N* nodes, the N* stiffener loci L,-Ly« incorporate N* nodes and the M patched
regions 4 ,—A,, incorporate N* nodes, then the simultaneous linear equations will involve
QN*+2NP+ 2N+ M2N" + N*) unknowns comprising the following : two from . 53, «.,
1% at each node on the sheet boundary I'*; two from ., 15, «f, % at each node on the patch
boundaries I}-T'%, ; the adhesive stress components 17, 3 at each node in each attachment
region 4,-A,; one scalar rotation parameter 3” for each patch: the attachment forces
S f% at each node on the stiffener loci L,—'y«; one end condition §,,(0) for each
stiffener. The required number of equations are generated as follows:

(i) Equation (5) gives 2N® simultaneous linear equations by taking the source point x,
at each of the N’ nodes on I"* and the unit force in the fundamental solution to be in the
j = 1orj=2direction.

(i) Equation (6) gives 2N* simultaneous linear equations by taking the source point
X, at each of the N* nodes on the patch boundaries I'-I"h, and the unit force in the
fundamental solution to be in the j = | orj = 2 direction.

(iti) Equation (7) gives 2N¥* —2M simultancous lincar equations by fixing the source
point X" at onec of the nodes in cach adhesion region 4 ,-A,, and taking the other source
point X’ to be at each of the remaining nodes in the same region with j = L orj = 2.

(iv) Equations (9) give 3M simultancous lincar cquations for force and moment
cquilibrium of cach of the M patches.

(v) Equation (10) gives 2N —2N* simultaneous lincar cquations by fixing the source
point x” at one end (¥ = 0) of cach stiffener L, — Ly« in turn and taking the other source
point x” to be at cach of the remaining nodes in the corresponding stiffener locus with j = |
orj=2.

(vi) Equations (15) give 3N¥™ simultancous lincar equations for force and moment
cquilibrium of cach of the N stiffeners.

4. EVALUATION OF INTERNAL STRESS AND STRESS INTENSITY FACTORS

Values of stress at points interior to the boundary of the sheet or a patch may be
obtained once the complete solution for displacements and tractions on the boundary
and distributions of attachment force have been determined. Using Hooke's law and the
linear elastic strain-displacement definitions, components of stress a,, (j, & = 1,2) may
be expressed as linear combinations of the partial derivatives of displacement du,/dx,,
cvaluated at the internal point x, [see for example Leipholz (1974)]

E | 1)ou(xe) Que(xg) v\ Qu,(xy) .
b ==z s 2
9 (%) l+v [2 { 0X,; + dx,, + 1—v/ ¢x,, % | 2

These derivatives are readily obtained from the general equation (1), and take the form of
an integral formula given by the right-hand side of eqn (1) with the kernels Uj,(x. x,) and
T,,(x, xo) replaced by their derivatives, Gy, (X, Xo) and H,;(x, X,), with respect to the spatial
coordinate x,, (i, j,k = 1,2):

Au,(xq)

= J;_ {Guji(x. Xo)1:(X) = Hyji(X. X o), (x) } dis (x)

Ok

|
+ ,—,ff Giji(x, o) F/(x)dx, dx, + %f Gyi(X. Xo) fE(x)ds (x), (22)
A L
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where

¢ . ¢
G (x.x) = . Ux.xy) and  Hg(x.Xy) = 57 Teu(XXo).
Sk

a Kok

When the cracked sheet fundamental solution is used. the stress is infinite at the tips
of the crack. By taking a series expansion of the differentiated kernels about either crack
tip Xy = (£a.,0), the kernels Gy, (x,x,) and H,,(x.x,) are seen to depend locally on the
inverse square root of the distance from x, to the tip (see Appendix). The stress intensity
factors can be defined as

G = lim {/ Xo)! = lim {/21ra.s(x,)! = lim (U 2nraa(x,)) 2
K, "LU W 2o ((X,)) lrlm‘l\/ nraaa(xy)} and Ky ‘l}_f‘;}(\, a12(Xe)j. (23)

—-0
V=0 =0 W =0

where r. ¢ are polar coordinates centred at the crack tip, such that x, = (+a+rcos .
rsiny).

Kernel functions, G¥, and H},,. for the stress intensity factors may be analytically
extracted from the singular leading terms in the series expansions of Gi,, and H,, about the
crack tip: that is

Grix,.+a) = ling{ 2arGL(xoXe} and  HE(x.ta) = lin}'{ 2arH,, (X, Xq ). 24
GO y=0

From the same procedure as that used to obtain internal stresses from eqns (21) and (22).
the stress intensity factors, given by cqn (23), can be obtained by replacing G, and #,,, by
Goand HE,ineqn (22). Thus, the stress intensity factors arc calculated directly from the
boundary and attachment force solution. The derivatives of displacement (22), used to give
the stress components at a point in the sheet or the patch, may be calculated direetly using
the complete solution of tractions and displacements on the boundary and the internal force
distributions. The integrals in egn (22) are reduced to lincar expressions in terms of the
nodal values from the solution in the same way as was described in Section 3. Since the
point X, is always interior to the boundary I, the boundary integrals in eqn (22) require
no special treatment and may be evaluated using Gaussian quadrature. Provided x,, does
not lic on one of the stiffener loct, the same approach may be used to evaluate the integrals
over Linceqn (22).

The area integrals in egn (22) may be treated as in eqgns (16) and (17), except in the
case where x, lics within one of the adhesion cells and the integrand Gy ,(x, x,)) is singular.
This singular case may be simply overcome provided that x, coincides with one of the nine
nodes in the cell, In this case, a certain function is subtracted from the integrand, thereby
cancelling the singularity and admitting evaluation by Gaussian quadrature. The subtracted
function is then integrated separately and recombined to give the required term in integral
(22). Details of the singularities occurring in the kernel G, (x, X,) are given in the Appendix,
and are found to be of the form

!
Gy (x. Xy} = , b, (@) +0(1). (25)

where p and ¢ are defined by x ~x, = (p cos ¢, p sin ). If the point x, coincides with the
nodal point X', then the integrand is singular in the cocflicients of ¢} only: the coeflicients
of the other cight nodal valucs have continuous integrands due to the vanishing of the shape
functions M™(3,,7:) at X" for m = r. The term in question is of the form

T J:[ M (71,7 Gi(X. Xo) dxy dov,
Cell

!
=1 ”: {M’(}’h}':)@,,(x.xn)—- {;%.(q))} dyydy,+1 j;“ plo)D, (@) de.  (26)
el £

dgs
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where the integrand enclosed by { } is continuous at x = x,. The second integral around
the edge of the cell is obtained by using dx, dx, = p dp de and performing the integration
with respect to the radial distance p. This integral is evaluated by Gaussian quadrature on
each of the four smooth sections of the cell edge.

Evaluation of the stress intensity factors X, and X, from eqn (23) using kernels (24)
in eqn (22) requires no special treatment.

5. ADDITIONAL CONSIDERATIONS

The system of equations described at the end of Section 4 is solved numerically in
matrix form using a computer program. The functions to be integrated, the subdivision of
the regions I, 5, A, (m=1,2....,M)and L, (n = 1,2,..., N*) into elemental sections
and the numerical integration method are coded into the program essentially as set out in
Sections 2. 3 and 4 and in the Appendix. However, there are some practical aspects of using
the present method which have not so far been mentioned and these are given below.

(a) When considering crack problems, nodes may not be positioned on the crack itself.
The cracked sheet fundamental solution is discontinuous across the crack locus and any
crack line nodes must lie a small distance to one side or the other.

(b} In some configurations, an adhesion region A,, and/or a stiffener locus L, and/or
either boundary I”* or I}, may overlap. On such an intersection, all nodes of I, I'%, L, and
A, must coincide exactly. If this condition were not imposed, the integral equations (5).
(6}, (7) and (10) would involve integrands which are singular at non-nodal positions and
which would require special treatment not considered in Scction 4.

(¢} When modcelling configurations involving symmetry boundary conditions, the con-
dition of antisymmetry must also be imposed on the adhesive stress distribution.

(d) Integrals involving the functions T,(x,x,) in eqns (1), (6), (7), (8), (10) and
(X, xp) in cqns (24) and (26) may be handled more casily in terms of the functions
Y, (x.xo) and Z,,(x, x,) defined by

d d
T;;(& x()) = (}"8_(5 Y;x(x‘ x()) aﬂd i{k]:(xv x(l) = a"s(;)' Zk;x(x9 X(;) (27)

with

d
Z,‘,,(x, Xy} = é‘\:‘” Y,(x, xy). (28)

veak

A function Z¥,(x.x,) may be similarly defined from H{,(x,x,) for the stress intensity
factors in egns (15) and (17).
Then, integration by parts gives

J; T},(X. XD)H,(X) dS (‘) = [ y;t(x* xl))“c(x)lf’ “‘J y;i(xv x()) (}}%%'EZ d}'
. r -

du;(x)
dy

L Hy (X, Xo)u;(x) ds(x) = [Zi;,(x, xo)u(x)]r --L Z;i(x, Xo) dy, 29

where 7 is a parameter which varies continuously along each element on the boundary I'.
Choosing y to be the local parameter in the elemental isoparametric transform (for which
u;(x) is quadratic in y), the derivatives du,(x)/dy in eqns (32) may be expressed in terms of
the nodal displacements and the linear derivatives of the shape functions. In the two-
dimensional theory of generalized plane stress (Muskhelishvili, 1963), the function ¥,,(x, x,)
may be expressed in closed form, and represents the resultant force across an arc due to a
given distribution of stress or traction. The forms of the functions Y, (X, Xg) and Z,;,(x, Xq)
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are simpler than the corresponding 7,(x.x,) and H,,(x,x,). and are less expensive to
evaluate. Details of this are given in the Appendix, where it can be seen that Y, (x, x,) is of
similar form to the displacement function U ,(x,x,): it has the same log-type singularities
and may be evaluated together with U, (x. x,) at little extra computational effort.

6. EXAMPLE RESULTS

Two reinforced sheet configurations are now considered using the Boundary Element
model developed in Sections 2-5. The first case demonstrates that the resulting solutions
are representative of the required physical system by comparing numerical solutions with
the exact solution for an axisymmetric patching configuration. The second case considers
the effect of a patch and a stiffener on an edge cracked panel, and demonstrates the
convergence of the stress intensity factor as the numbers of elements and cells are increased.

6.1. A circular patch bonded to a large intact sheet

If the sheet is infinite in size and remotely loaded in hydrostatic tension o, = 0., = g,
the entire configuration is axisymmetric and the attachment problem may be solved in
closed form. The exact solution, given in Young (1988), is to be compared with results
from the present model using the two element mesh geometries, (i) and (ii). shown in
Fig. Ha.b). The chosen configuration for analysis by the Boundary Element model
is of an uncracked square sheet of side 200 mm (i.e. — 100 mm < x;, € 100 mm, ~ 100 mm <
X, £ 100 mm) loaded with tractions 1, =0, 5= +¢ on x,= +100 mm and | =
+a, y =0 on x, = +100 mm. The entire stress solution is lincar in ¢ and so the value
chosen is ¢ = | GPa. The sheet has thickness &' = 1.5 mm, tensile modulus £° = 70 GPa
and Poisson’s ratio v* = 0.3. A circular patch of radius R = 30 mm with an unloaded
boundary is bonded to the sheet over the region {(x,) +(x3)? < R*} by means of an
adhesive layer of thickness i* = 0.15 mm and shear modulus ¢* = 0.6 GPa. The patch is of
the same material as the sheet with thickness 27 = 1.5 mm, tensile modulus £7 = 70 GPa
and Poisson’s ratio v = 0.3,

Two different meshes of elements and cells are used to study this problem, and are
shown in Fig. . The first mesh (i), in which the entire structure is considered, involves the
subdivision of A {{(x,)*+(x;)* € R*} into five cells (with 25 nodes) with four elements on
the patch boundary I'". Each of the four edges of the sheet boundary ™ is subdivided into
four equal clements. In this configuration, the boundary conditions consist of values of
traction only and it is nceessary to apply three nodal displacement boundary values to cach

{a} {b}
a X, o X2 T , "7
a | ! |
T
Patch adhestan
reqgion
e~ ' N\ - o -
-
k]
- |- E b
" » Patch adhesion region
x
o - - -

*

T

4

X9 symmetry

b S

. ¢ .
Contiguration (1) Contiguration {ii}

Fig. 1. Circular patch bonded to a large biaxially loaded sheet. (Example | showing the cell
subdivision used in the two configurations (i} and (ii) analysed.)
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of the sheet and patch in order to constrain the otherwise arbitrary rigid body translation
and rotation. The second mesh (ii) exploits the symmetry of the problem about the x, and
x. axes, and only one quadrant of the structure is considered (x, = 0, x, = 0) with boundary
conditions ¢, =0=u, on x,=0 and ¢, =0=u, on x, =0. The attachment region
A*{(x))*+(x2)* < R% x, 20, x; >0} is subdivided into eight cells (43 nodes) with 10
elements (20 nodes) on the patch boundary, and a total of 36 equal elements (72 nodes) are
used on the sheet boundary. In accordance with consideration (c) in Section 5, antisymmetry
conditions are also imposed on the adhesive stress, t.e. 14 =0 on x;=0and r} =0 on
x, =0

The results from the present model are compared with the exact axisymmetric solution
for the radial component of adhesive shear stress t? = [(t{)*+(z3)°]"* in Fig. 2. The
adhesive shear stress radial component is zero at the patch centre and attains its largest
value at the patch edge. Both configurations give solutions which are consistent with the
exact solution, with errors occurring at the patch edge, of 6% for subdivision (i) and 4%
for subdivision (ii). The tractions on the boundaries x, = 0 and x, = 0 of the sheet and the
patch in the symmetric case (ii) and values of stress calculated at the internal attachment
cell node positions in case (i) also give agreement with the exact solution ; the largest errors
are 8% for subdivision (i) and 4% for subdivision (ii). The errors in the solution are seen
to diminish when the mesh of cells and elements is refined, and it is concluded that the present
model may be used to obtain accurate solutions for adhesively bonded reinforcements to
thin sheets.

6.2. A putch and a stiffener bonded to an edge-cracked sheet

The configuration to be studied is schematically illustrated in Fig. 3, and the thicknesses
and clastic properties of the sheet, patch and adhesive layer are as used in example (1)
above. The sheet is rectangular of dimensions 0 < x, €90 mm, —90 mm <€ x; £ 90 mm
and contains an edge-crack located at 0 < x) <, x; =0; two values of crack-length
a = 1499 and ¢ = 29.99 arc considered. The left-hand tip of the crack in the fundamental
solution is located outside the boundary of the sheet and doces not affect the solution. The
sheet is loaded uniaxially with values of traction ¢, = ¢ on the edges x; = £90 mm, all
other tractions on [ and [® being zero (as carlier, the value o = | GPa is used).

A stiffener of length 2™ = 120 mm paraliel to the 2-direction is bonded to the sheet at
position x; = 15 mm, —60 mm < x, € 60 mm. The material parameters of the stiffener
and its adhesive layer are given by: cross-sectional arca B™ = 6 mm?, tensile modulus

0.30
r:lc
Exact solution
o5t A (N xa0
v () x sxy #
o i} xy 0
0.20 3 x i} xy e xg
015 |-
0.10 |-
-4
0.08 -
a
v
e oxmcx=*T
0 0.2 0.4 0.6 0.8 1.0
/R

Fig. 2. Comparison of results from the boundary element model with an exact solution for a circular
patch bonded to a large biaxially loaded sheet (Example 1).
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Fig. 3. Conliguration of patched, stiffened edge-cricked panel showing subdivisions of bound-
aries, stilfener locus and patch adhesion region into elements. (Example 2 with crack length
a = 14,99 mm.)

£ =70 GPa, shear modulus 6™ = 27 GPa, transverse flexural rigidity D = 175 GPa
mm *, bond line width v = 3 mm, adhesive layer thickness A = 0.15 mm and adhesive
shear modulus g” = 0.6 GPa. The ends of the stiffener y = 0 and y = 120 mm (correspond-
ing to x; = —60 mm and x, = 60 mm respectively) are loaded with T4(0) = T,(/™") =
a B EY[E, so that focally the ends automatically deform with the sheet and the stiffener
behaves as if it were much longer.

An uncracked rectangulur patch of width 30 mm and height 60 mm is bonded to the
sheet over the region A4 {0 < vy €30 mm, —30 mm < v, < 30 mm}. Itis assumed that the
patch and the stiffener do not interact directly.

The boundaries and attachment regions are subdivided into elements and cells
as follows. The boundary of the shect I'™ is subdivided into 8N elements (involving
16/ N + 1 nodes). the boundary of the patch TP into 6NV clements (with 12N nodes), the
stiffencer locus L into 4N clements (with 8N + [ nodes for ¢ = 14.99 mm and SN+ 2 nodes
for ¢ = 29.99 mm) and the adhesion region A into 2N° quadratic isoparametric cells
(with 2N+ DEN+ 1)+ N nodes for ¢ = 1499 mm and QN+ 1)(dN+ 1)+ 2N nodes for
a = 2999 mm). In order to study the convergence of the results, four different meshes are
considered, corresponding to N = 2, 4, 6 and 8. The configuration and the mesh for N =2
are illustrated in Fig. 3. Note that the boundary I starts and ends at opposite sides of the
crack and that different numbers of nodes are required on L or A for the two different
crack lengths. The precise positions of the nodes common to the region A and any of ™,
™ or L are chosen to satisfy considerations (a) and (b) in Scction 5.

Various combinations of patch and stiffener arc considered and Table | shows the
values of normalized stress intensity factor K,/(s,/na) denoted by K* for the unpatched
and unstiffened sheet, K* for the unpatched and stiffened sheet, K* for the patched and
unstiffened sheet and A™ for the patched and stiffencd sheet. The values of K* have already
converged using the crudest mesh N = 2 and agree with independent results (Rooke and
Cartwright, 1976). The solutions for the reinforced sheets have converged satisfactorily by
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Table 1. Normalized stress intensity factors Ki{o,/za) for
patched and stiffened panels using various meshes character-

ized by the number ¥
a N K" Kt Kr f e
1499 mm 2 1.296 1.090 0.228 0.235
4 1.297 1.049 0.212 0.214
6 1.297 1.033 0.208 0.208
8 1.297 1.025 0.207 0.205
29.99 mm 2 1.788 0.827 0.204 0.206
4 1.790 0.834 0.192 0.196
6 1.790 0.835 0.189 0.192
8 1.791 0.835 0.188 0.191

N = 6, with the largest difference between the cases N = 6 and NV = 8 amounting to 0.6%
for K™ when a = 14.99 mm.

The relationships between various reinforcing effects are shown in Table 2. The
reinforcing effect of the patch and the stiffener is demonstrated by the ratio of the stress
intensity factors for the reinforced structure to that of the unreinforced structure. When
the cracked sheet is reinforced by a patch only, this ratio is K*/K". If a stiffener s present
and loaded at its ends in order to simulate a section of a much larger structure, the
stress intensity factor of the corresponding unreinforced sheet due to the total loading
is K= (1 +BYEYh W E)K* where W* = 90 mm is the width of the sheet. The ratios
K*/K* and K™/K*" are shown. It can be seen that the presence of the stiffener alone
considerably reduces the stress intensity factor for both crack lengths, but it has much
less cffect when the sheet is patched (KP/KY = K™/K* to within 6%).

7. CONCLUSIONS

(1) The Boundary Element Method has been used to model a thin, cracked, finite sheet
reinforced by bonded patches and stiffeners. It is assumed that the reinforced structure
undergoes plane deformation only.

(2) The geometry of the configurations which may be studied is limited to cases where
the crack can be described by a single straight line. The boundaries of the sheet and the
patch may be arbitrarily specified and edge-cracks may be considered.

(3) The fundamental solution used in the boundary integral equations for the sheet
avoids the need to satisfy boundary conditions on the crack surface and leads to exact
modelling of the crack-tip singularities.

(4) Solutions are obtained numerically by subdividing the domains of integration into
quadratic isoparametric elements, giving a system of simultaneous linear equations in terms
of nodal values of traction and displacement on the boundaries and attachment force over
the reinforced regions. Values of stress at internal points and the stress intensity fuctors of
the crack are subsequently calculated numerically from integral formulae.

(5) Comparison of results with known solutions indicates that the model may be used
to accurately analyse reinforced sheets, provided that a sufficient number of adhesion cells
is used. Values of stress intensity factor converge rapidly as the mesh of boundary elements
and adhesion cells is refined.

Table 2. The effect of a patch and a stiffener on the stress intensity
factor for an edge cracked sheet

a K¥ /K Kt /K" K™K

14.99 mm 0.757 0.160 0151
29.99 mm 0.446 0.105 0.102
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APPENDIX
The functions U,{x.X,). Y(X.Xp), G (X.Xy). Z,, (%, X)), GELUX, ) and Z2,(x. ta) Tor an isotropic
material of Poisson’s ratio v and tensile modulus £ are given below. Define x = (3--v). (1 +v), i = /(1 +v) and

the complex vanables

=X 4N, Dy T N F L, (Al)

t

corresponding to the points x and x, respectively, where i' = — 1. The complex parameter S, (5 : 1, 2) s defined
by

R e— . 2
S, 27t(|+h‘)(‘ Rl _,) (A2)

and represents the vector force (f = 1,2) per unit thickness in the fundamental solutions. A superimposed bar
will be used to denote complex conjugation (e.g. & = x, —ix,).
The functions U, and Y,, are of the form

U +ilU,, = o

Dz Fzn3). Yo+i¥,= —il(1+ K= 20 2 = DA 520 50 (A3)

In the Kelvin solution, Q, and D, are given by

(A4)

Q(ziz9) = =S, log{z—20). D/ (z. 5z, 3) = —KS, logl:—:‘,lz+5"<::'

It should be noted that Q; includes the complex logarithm which is a multi-valued function. When integrating
over an clement, log (z — z,) must be made to vary continuously. The fundamental solution for a crack situated
at {—a € x, € 4, x, = 0} involves terms €2, and D, given by

oo Z0) = (202 + Xz 20, Z0).
D,(2.5:20. 20) = D) (20 20, 30} + KU 29, o) = QU (51 20, Z) = (2 = D (2120, 20) (A5)
where
(220, 50) = = ISINN (2, Z0) ~ N (2. 20)] = L8 U E0— 2N (2. 5)
Q' (z129.39) = ;—Q,(:;:.,.:'o)

= == ; ::_“:)_l :{S,{"""l(-'- Fo) =M (2, :o)]+5,(50—:(7)-‘!:(:- :-n);‘ {A6)
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2(::0—a’+(:2-—a")""(:é—a’)“z)]
Niz.z9) =1 5 = =SS
50 °’{ CrE—a) et Goma) )
Nyz.20) = (25—a) "M (2.2y)

IR NS PP S N
Moz = E=2) _(““ a9

I~z

Mi(z.20) = [M (2.2 + 1 =2p(zi—a%) " "= =20) (AT

and the complex square root function (z*—a)"'? is defined to be the continuous branch for which

lim,. . {(z*=aY" ¥zt = L
The functions G,,, and Z,,, are of the form

i é R R
G +iG 2 (—-:-:; 65,,)0’(:':':""“)
. ifé ¢
G +iGy = 2‘};(;;;; - a_u)D (z.8:20.5)

P

. . ¢ ¢ .
Zip+iZy: = _,{(1 +x)(5—;- + ‘;‘;-)n,(:;:o, 2} =2u(G e +.c,,:)}
12y | 32

. e ¢ . .

Z:,, +i2m = -I{(l +N)l<§T - 5"_;’)‘1,(: Y :o) -~ ZM(G:“ +IG1,;)} (A8)
rafy ]

and the derivatives from the two fundamental solutions (A4} and {(AS) are given by

an; xS, S, &b kS . S(z=z) Q7 S, Q"

J20 =2y F—Z2o0 03, F-=3, (F=Z)7 029 =24 REN
aD; e
= K220 3) W (E 50 D) ~ T = DWW (2 20, Fo)s

1o
""""" SEASCENENES NEENENEICEEL NEENEN)

Le 4 oy
f‘-;’_{' =¥, (z:20. 30D, 3“:“ =W (x5 50 (A9)
L2 ¢

where
8,0\ 2+ 8N 20
(21=a®) S, M (2, 20) + 5, M (2, )}

Wiziz0.5) = %{"S Q (= -o)+s !N (= 3+ (G~ u)Q:(-'--:o)]}
Wizize. 50 = 5( “') Y Z{KS; M:(J.Zo)‘*'s,{f“fz(:x fﬁ}‘(‘(fo":n)PZ(:-fu)n (A1)

Wizize 3 =

11
2
‘P;(:;:“,f“) = 5

Pyz.20) = My (2 20) + (25 ~a?y Vo =2
Q,(zoz0) = (25 —d*) VM (2, 2y)
Q:(:v:t)) = {MZ(:v:i)) “:u(:::x -“1} i !{11"[:(:¢ Zy)+ Il:’/(-‘{:““ﬁ}l 5 (All)

The singular terms (1/p)0, () defined in eyn (49), where 2 —z, = p €', are of the form
. ! . i
‘pm *H‘Du- = '5;{"‘1(@) + B;(‘!’” d’!ﬂ +iPyy = é’; {A,((P} "'B;(‘P}}- (Al2)

For the Kelvin solution, A,(p) and B,(ip) are given by
Al(p) =&S5,¢7" =8¢ B (p) =«S,e*+8,e™ (Al3)
and for the criacked sheet solution, A() and B(p) are given by

A(9) = A7 (9) = kS,(c* +c™ )+ (S, +x5) ™ B(0) = B/ (@) +S,(c” ~c") + (xS, +x8) e, (Al4)

The kernels GE.(x. +at and 72 .(x. +a) required to calculate the stress intensity factors in egn (15) are
related to four functions Wi(z, £a) (n = 1,2, 3,4) in the same way that the stress kernels G, ,(x, Xo) and Z, (X, %)
involve the four functions W,(z:2q. 5,) (1 = 1.2,3,4) in eqns (A9)-(A1l). The terms ¥? arc of the form

T ¥l
-) (S, +8)W'(z. ta)

a

l T $2 I
Wiz ta) = “2‘(;) (S, +SW(. ta) ¥ ta) =~ ;(

3

1:2 [P}
e ta) = 5 ) (84S ko) WG 2a) = (:-:) (xS, + S)W'(=. +a)

B =

(ALS5)
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where
s+a)’ Tu
Vi tar=| =] -l ¢ty = ———r—73.
xda (Fa)yz"=a’) -

Finally. the second integral in egn (18) is given by

—gtl —vor b +70) =g+ 71 T =743))

where

g(a. By = 2flog(x* + ) =3xf+x tan~ " (B 1)+ i tan™' (2/B).

b et
J J log [ = 7o} = (72 =7v02) 1dy  dyy = [gll =501 L= 7o) Fgll+500L L+702)
RN

(A16)

(AL7)

(ALS)



